|
|||||||||||||||
个人简介 |
蓝公仆,博士,特聘教授,2001-2008年于长春理工大学获得学士和硕士学位;2011年于中国科学院光电技术研究所获得博士学位;2011-2017年在美国华盛顿大学、休斯顿大学、阿拉巴马大学伯明翰分校从事科研工作;2017年受聘于佛山科学技术学院。(1)硕博期间主要从事航空和天文系统的研发:于2006-2008年研发折反式多光谱偏振望远系统,用于白天天空背景下暗目标探测研究;于2008-2011年设计多款10k × 10k(当时世界上最大芯片)高分辨航空侦查相机和大视场航空测绘相机镜头,进行航空侦查和测绘工作。(2)赴美期间主要从事视觉科学及眼科医学成像技术研究:于2011-2012年设计并制作一系列液体变焦系统,用于共焦显微镜快速断层扫描;于2011-2012年研制宽光谱k线性OCT系统,采用光学方法取代常规的数字方法,实现了光谱在波数空间的线性分布,大幅度提高了OCT系统的探测灵敏度;于2013-2015年主持设计并搭建了非共平面自适应光学扫描激光检眼系统(AOSLO),实现了大屈光度(-9 D到 +7 D)、多模态人眼视网膜细胞级(分辨率:2.3μm)高清晰度成像,该系统在休斯敦大学已应用于青光眼患者视网膜视觉细胞及视神经头筛板组织退化机制研究;于2015-2017年发明并搭建共光路OCE系统,将相位噪声降低了6000倍,实现了亚纳米级(0.24 nm)动态探测分辨力,在国际上率先实现了基于OCE技术的微激励(0~20 Pa)人眼角膜力学参数的高分辨在体测量。(3)2017年回国后专注于OCT技术的功能性拓展:如OCT血流造影术(OCT-A)和OCT弹性成像技术(OCT-E)的研究;提出了亚纳米级幅值阻尼振动的OCT-E直接观测方法,通过解耦合眼动干扰,实现角膜微响应的“时域–空域–频域”的多域多参数OCT-E高分辨在体观测;突破“黑眼睛“遮挡限制,实现大视场全虹膜OCT-A血流造影新方法;获得国家自然科学基金、广东省珠江人才计划、广东省自然科学基金、广东省教育厅高校特色创新项目等多项项目的支持。
|
||||||||||||||
工作经历 |
2017.09 – 现在 佛山科学技术学院,物理与光电工程学院 四级特聘教授 2015.09 – 2017.08 University of Alabama at Birmingham, Postdoctoral Fellow 2013.04 – 2015.08 University of Houston, Research Associate 2012.04 – 2013.03 University of Washington, Senior Fellow 2011.10 – 2012.03 Ohio State University, Visiting Scholar |
||||||||||||||
教育背景 |
2008.09 – 2011.07 中国科学院光电技术研究所 光学工程 博士 2005.09 – 2008.07 长春理工大学&中国科学院光电技术研究所 光学工程 硕士(联合培养) 2001.09 – 2005.07 长春理工大学 测控技术与仪器 本科 |
||||||||||||||
科研项目 |
[1] 在体角膜多光束OCE弹性测量方法研究,国家自然科学基金面上项目,NSFC 61975030,2020.01-2023.12,主持,在研,59万。 [2] 近视眼手术角膜力学性能的OCE测量方法研究,广东省自然科学基金面上项目,2021A1515011981,2021.01-2023.12,主持,在研,10万。 [3] 广东省珠江人才创新创业团队海外青年项目,2019ZT08Y105,核心成员、子项目负责人(眼底图像跟踪系统开发),2020.06-2025.06,在研,1400万。 [4] 基于OCE弹性测量的圆锥角膜疾病早期筛查研究,广东省普通高校特色创新项目(广东省教育厅),2020KTSCX130,2021.01-2022.12,主持,结题,6万。 [5] 基于光学相干技术的在体人眼角膜多弹性参数的测量方法研究,高层次人才科研启动项目,Gg07070,2017.09-2021.08,主持,结题,45万。 |
||||||||||||||
获奖情况 |
2019年广东省“珠江人才计划”引进创新创业团队(青年团队)核心成员 第二届(2019-2020年度)中国科技产业化促进会科学技术奖杰出贡献奖:排名1 2016 Edmund Educational Award Finalists (美国共11名、欧洲共12名) |
||||||||||||||
主要论文 *代表通讯作者 #代表共同作者 |
期刊论文2023(截止至4月): [1] Lan G*, Twa M D, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: a topical review of challenges and opportunities. Computational and Structural Biotechnology Journal. 2023, 21, 2664-2687. (IF 2021: 6.155) [2] Ma G, Cai J, Zhong R, He W, Ye H, Duvvuri C S, Song C, Feng J, An L, Qin J, Huang Y, Xu J, Twa M D, and Lan G*. Corneal Surface Wave Propagation Associated with Intraocular Pressures: OCT Elastography Assessment in a Model Eye. 2023 (Pre-Print) [3] Xu J, Yuan X, Huang Y, Qin J, Lan G, Qiu H, Yu B, Tan H, Zhao S, Feng Z, An L*, and Wei X*. Deep-learning visualization enhancement method for optical coherence tomography angiography in dermatology. Journal of Biophotonics. 2023 (In-Press) 期刊论文2022: [1] Lan G*, Shi Q, Wang Y, Ma G, Cai J, Feng J, Huang Y, Gu B, An L, Xu J, Qin J, and Twa M D*. Spatial assessment of heterogeneous tissue natural frequency using micro-force optical coherence elastography. Frontiers in Bioengineering and Biotechnology. 2022, 10, 851094. (IF 2021: 6.064) [2] Li W#, Feng J#, Wang Y, Shi Q, Ma G, Aglyamov S, Larin K V, Lan G*, and Twa M D*. Micron-scale hysteresis measurement using dynamic optical coherence elastography. Biomedical Optics Express. 2022, 13(5), 3021-3041. (IF 2021: 3.562) [3] 时群,冯锦平,郑烨,王艺澄,马国钦,秦嘉,安林,黄燕平,许景江,蔡静,石悦,姬崇轲,蓝公仆*. 基于微激励光学相干弹性成像的角膜固频在体测量. 光学学报. 2022, 42(10), 1012005. [4] 冯锦平,周国鹏,蓝公仆*. 齿条类刀具展成加工修形齿廓的理论设计. 机械传动. 2022.46(10), 30-36. [5] Dong L, Wei Y, Lan G, Chen J, Xu J, Qin J, An L, Tan H, Huang Y*. High resolution imaging and quantification of the nailfold microvasculature using optical coherence tomography angiography and capillaroscopy: a preliminary study in healthy subjects. Quantitative Imaging in Medicine and Surgery. 2022, 12(3), 1844. (IF 2021: 4.630) [6] Yuan X, Huang Y, An L, Qin J, Lan G, Qiu H, Yu B, Jia H, Ren S, Tan H, Xu J*. Image enhancement of wide-field retinal optical coherence tomography angiography by super-resolution angiogram reconstruction generative adversarial network. Biomedical Signal Processing and Control. 2022, 78, 103957. (IF 2021: 5.076) [7] Liu S, Ji Z, He Y, Lu J, Lan G, Cong J, Xu X, Gu B*. Deep-Learning Image Stabilization for Adaptive Optics Ophthalmoscopy. Information. 2022, 13, 531. [8] An L#, Wu X#, Wang S#, He K, Chen Y, Lan G, Huang Y, Xu J, Ou C, Zeng X, Zhao Y, Wang X, Long J, Wei X, and Qin J* (2022). In vivo measurement of anterior chamber pulsation in healthy subjects using full-range complex spectral domain optical coherence tomography. Optics Continuum. 2022, 1(2), 325-334. [9] An L#, Yan B#, Zhao Y#, He K, Wu X, Lan G, Huang Y, Xu J, Ou C, Zeng X, Wang S, Wang X, Long J, Wei X, and Qin J*. Pulsatile retinal nerve fiber layer imaging with functional optical coherence tomography. Optics Continuum. 2022, 1, 283-296. [10] 陈嘉涛, 张泓凯, 黄燕平*, 蓝公仆, 许景江, 秦嘉, 安林. 基于视频的生理参数测量技术及研究进展. 计算机工程与应用. 2022, 58(6): 58-68. [11] 谭泰铭, 陈林江, 蓝公仆, 许景江, 安林, 黄燕平*.基于LDU的视网膜OCT图像分层分割研究. 信息技术, 2022, 10: 31-40. 期刊论文2021: [1] Lan G, Xu J, Hu Z, Huang Y, Wei Y, Yuan X, Liu H, Qin J, Wang Y, Shi Q, Zeng J, Shi Y, Feng J, Tan H, An L*, Wei X*. Design of 1300-nm spectral domain optical coherence tomography angiography system for iris microvascular imaging. Journal of Physics D: Applied Physics. 2021, 54(26): 264002. (IF: 3.207) [2] Lan G, Aglyamov S, Larin K V, and Twa M D*. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility. Journal of Biomechanics. 2021; 121: 110427. (IF: 2.712) [3] Lan G*, #, Zeng J#, Li W, Ma G, Shi Q, Shi Y, Wang Y, Xu J, Huang Y, Qin J, Feng J, Tan H, An L*, Wei X*. Customized eye modeling for optical quality assessment in myopic femto-LASIK surgery. Scientific Reports. 2021; 11(1), 16049. (IF: 4.379) [4] Lan G, Aglyamov S, Larin K V, and Twa M D*. In-vivo human corneal shear-wave optical coherence elastography. Optometry and Vision Science. 2021; 98(1), 58-63. (IF: 1.973) [5] 王艺澄,李雯杰,黄燕平,冯锦平,马国钦,时群,安林,许景江,秦嘉,谭海曙,蓝公仆*. 光学相干弹性成像方法及研究进展. 激光与光电子学进展. 2021; 58(14): 1400002. [6] Zeng J, Lan G, Zhu M, Sun K, Shi Q, Ma G, Liu Q*. Factors associated with corneal high-order aberrations before and after femtosecond laser-assisted in situ keratomileusis. Annals of Translational Medicine. 2021; 9(12): 989. (IF: 3.932) [7] Dong L, Wei Y, Lan G, Chen J, Xu J, Qin J, An L, Tan H, Huang Y*. High resolution imaging and quantification of the nailfold microvasculature using optical coherence tomography angiography and capillaroscopy: a preliminary study in healthy subjects. Quantitative Imaging in Medicine and Surgery. 2021, doi: 10.21037/qims-21-672 (Accepted). (IF: 3.837) [8] An L#, Ye C#, Wu X, Lan G, Huang Y, Xu J, Wei X, and Qin J*. Depth imaging through the anterior to posterior segment of the whole human eye based on optical coherence tomography in the spectral-domain. OSA Continuum. 2021(11); 4: 2784-2795. [9] 韦赢兆,袁钘,蓝公仆,黄燕平,秦嘉,安林,谭海曙,任尚杰,赵士勇,别佳奇,贾海波,于波,许景江*. 心血管光学相干层析成像的研究进展和应用. 激光与光电子学进展. 2021; 58(24): 2400001. 期刊论文2020以前: [1] Lan G, Larin K V, Aglyamov S, and Twa M D*. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography. Biomedical Optics Express. 2020; 11(6): 3301-3318. (IF: 3.732) [2] Lan G, Gu B, Larin K V, and Twa M D*. Clinical corneal optical coherence elastography measurement precision: effect of heartbeat and respiration. Translational Vision Science and Technology. 2020; 9(5):3. (IF: 3.283) [3] Lan G, and Twa M D*. Theory and design of Schwarzschild scan objective for optical coherence tomography, Optics Express. 2019; 27 (4): 5048-5064.(IF: 3.894) [4] Lan G, Singh M, Larin K V, and Twa M D*, Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography, Biomedical Optics Express. 2017; 8 (11):5253-5266.(IF: 3.732) [5] Lan G and Li G*. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography. Scientific Reports. 2017; 7: 42353.(IF: 4.379) [6] Lan G, Mauger T, and Li G*. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging. Biomedical Optics Express. 2015; 6: 3362-337.(IF: 3.732) [7] Wang M, Wu N, Huang H, Luo J, Lan G, Zeng Y, Wang X, Xiong H, Han D, Tan H. Large-depth-of-field full-field optical angiography. Journal of Biophotonics. 2018;12(5): e201800329.(IF: 3.207) [8] An L, Li P, Lan G, Malchow D, Wang RK*. High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth. Biomedical Optics Express. 2013; 4 (2): 245-259.(IF: 3.732) [9] Li P, An L, Lan G, Johnstone M, Malchow D, Wang RK*. Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. Journal of Biomedical Optics. 2013; 18 (1): 16012.(IF: 3.170) [10] 蓝公仆*,汪旋,梁伟,高晓东,马文礼. 主动调焦式航空相机物镜光学设计及温度仿真分析. 光学学报,2012; 37(3): 223-233. [11] 蓝公仆*, 程锋, 马文礼. 应用偏振和光谱滤波法对白天星体进行探测. 仪器仪表学报, 2008;(4). [12] 廖靖宇, 高晓东, 蓝公仆 赵仁杰. 航空相机物镜动态光机热分析与设计. 光电工程, 2010(07):40-44. 会议论文: [1] Lan G, Li G*. Design of adaptive objective lens for ultrabroad near infrared imaging. Proceedings of SPIE. 2016; Vol. 9713, 9713-14. [2] Lan G*, Zhao R, Zhuang F, Ma W, Gao X, Liang W. Calculation of the vignetting distribution caused by the reflective four-sided pyramid. Proceedings of SPIE. Vol. 8205, 820504 (2011). [3] Lan G*, Ma W, Cheng F. Daytime star detection device using polarization and spectral filtering method. Proceedings of SPIE. Vol. 7658, 76580Y (2010). [4] Lan G*, Larin K, Twa M D. In vivo characterization of corneal natural frequency using optical coherence elastography. IOVS (ARVO meeting), 2019, 60(9): 6826-6826. [5] Twa M*, Lan G, Singh M, Larin K. Clinical application of optical coherence elastography for corneal biomechanics. IOVS (ARVO meeting), 2019, 60(9): 6828-6828. [6] Lan G*, Zotov A, Boehm S, Larin K, Twa M. Effect of heartbeat and respiration on elastography measurement precision. IOVS, 2017; 58 (8); ARVO E-Abstract: 4338. [7] Twa M*, Lan G, Singh M, Larin K. In-vivo human corneal elasticity imaging: a phase sensitive optical coherence elastography method. IOVS, 2017; 58 (8); ARVO E-Abstract: 4324 [8] Lan G*, Porter J. First-order optical design to accommodate large uncorrected refractive errors in adaptive optics ophthalmoscopes. IOVS, 2014; 55; ARVO E-Abstract: 5196. [9] Lan G*, Li P, An L, Malchow D, Johnstone M, Wang RK. Extended-imaging-depth (16mm) spectral domain OCT operating at 1310-nm for anterior segment biometry of the human eye. IOVS, 2013; 54; ARVO E-Abstract: 2642. [10] Wang X, Lan G, Gao X, Liang W. Aerial camera auto focusing system. Proceedings of SPIE. 2012; Vol. 8417. |
||||||||||||||
知识产权 |
已授权: [1] 蓝公仆,迈克尔 图,陈国杰,安林,谭海曙,许景江,黄燕平,秦嘉. 一种共光路的多光束光学相干弹性测量系统及测量方法. 中国,发明专利,专利号:ZL201811539189.6,授权公告号:CN109620130B.(授权日期:2021-09-28) [2] 蓝公仆,陈国杰,许景江,安林,黄燕平,秦嘉,谭海曙. 基于微透镜阵列的多光束光学相干的弹性测量系统及方法. 中国,发明专利,专利号:ZL201811539379.8,授权公告号:CN109645954B.(授权日期:2021-06-29) [3] 蓝公仆,谭海曙,安林,许景江,黄燕平,秦嘉,陈国杰. 基于光开关控制和微透镜阵列的光学弹性测量系统及方法. 中国,发明专利,专利号:ZL201811533179.1,授权公告号:CN109674441B.(授权日期:2021-06-29) [4] 蓝公仆,迈克尔 图,黄燕平,安林,许景江,秦嘉,谭海曙,陈国杰. 共光路微透镜阵列的多光束光学相干弹性测量系统及方法. 中国,发明专利,专利号:ZL201811539190.9,授权公告号:CN109620131B.(授权日期:2021-08-03) [5] 蓝公仆,安林,许景江,黄燕平,秦嘉,谭海曙,陈国杰. 一种多探测光束光学相干在体角膜弹性测量系统及方法. 中国,发明专利,专利号:ZL201811539376.4,授权公告号:CN109620132B.(授权日期:2021-08-03) [6] 蓝公仆,梁伟,高晓东,马文礼. 一种拼接式大面阵数字航测相机. 中国,发明专利,公开号:CN201110099328,专利号:ZL201110099328.X. [7] 蓝公仆,马文礼,梁伟,高晓东. 一种宽角和长后工作距离的航测相机全色物镜. 中国,发明专利,公开号:CN201110099513,专利号:ZL201110099513.9. [8] 蓝公仆,梁伟,高晓东,马文礼. 一种航空相机现场成像测试系统. 中国,发明专利,公开号:CN200910089701,专利号:ZL200910089701.6. [9] 蓝公仆,梁伟,马文礼,高晓东. 一种可调焦式航空相机. 中国,发明专利,公开号:CN201010121564,专利号:ZL201010121564.2. [10] 蓝公仆,马文礼,程锋、高晓东,朱耆祥. 一种改进的白天星体探测装置. 中国,发明专利,公开号:CN200910091599,专利号:ZL200910091599.3. [11] 梁伟,蓝公仆,马文礼,高晓东. 一种主动式温度压力补偿的实时传输型航空摄影相机镜头. 中国,发明专利,公开号:CN201010121555,专利号:ZL201010121555.3. [12] 汪旋,蓝公仆,高晓东,梁伟,胡家文. 一种航空相机调焦系统.中国,发明专利,公开号:CN201110280337,专利号:ZL201110280337.9. [13] 程锋,蓝公仆,马文礼,高晓东,朱耆祥. 一种白天星体探测装置. 中国,发明专利,公开号:CN200910088900,专利号:ZL200910088900.5. [14] 秦嘉,吴小翠,安林,蓝公仆,谭海曙,陈国杰,黄燕平. 一种用于测量眼球脉动的光学相干层析成像系统. 中国,实用新型,专利号:ZL201822255498.2,授权公告号:CN209733949U. (授权日期:2019-12-06) [15] 秦嘉,贺潇,林盛豪,安林,蓝公仆,谭海曙,陈国杰,黄燕平. 人眼毛细血管血氧测量装置. 中国,实用新型,专利号:ZL201822273736.2,授权公告号:CN210249850U.(授权日期:2020-04-07) [16] 秦嘉,吴小翠,安林,黄燕平,蓝公仆,谭海曙,陈国杰. 光谱仪色散组件及光谱仪. 中国,实用新型,专利号:ZL201822216954.2,授权公告号:CN209513049U.(授权日期:2019-10-18) [17] 黄银瑞,秦嘉,谭海曙,安林,蓝公仆,黄燕平,陈国杰,吴小翠. 一种精确测量人眼角膜前后表面光程差的装置. 中国,实用新型,专利号:ZL201822259464.0,授权公告号:CN209996294U.(授权日期:2020-01-31) 受理中: [1] 蓝公仆,时群,马国钦,王艺澄,李雯杰,安林,黄燕平,秦嘉,许景江,谭海曙,陈国杰. 一种可穿戴式光学相干在体角膜弹性测量系统. 中国,发明专利,专利号:202011101491.0(已受理) [2] 蓝公仆,马国钦,时群,李雯杰,王艺澄,安林,黄燕平,秦嘉,许景江,谭海曙,陈国杰. 一种非线性采样的多光束光学相干弹性测量系统及方法. 中国,发明专利,专利号:202011426178.4(已受理) [3] 蓝公仆,李雯杰,王艺澄,时群,马国钦. 非接触测量角膜黏弹性方法、系统以及存储介质. 中国,发明专利,专利号:202110520594.9 (已受理) [4] 黄银瑞,秦嘉,谭海曙,安林,蓝公仆,黄燕平,陈国杰,吴小翠. 角膜表面光程差测量装置及测量角膜厚度和折射率的方法. 中国,发明专利,专利号:201811646061.X (已受理) [5] 秦嘉,安林,蔡佳龙,黄燕平,蓝公仆. 面向眼部血流快速成像的相干光扫描检眼镜. 中国,发明专利,专利号:201811646166.5 (已受理) [6] 秦嘉,黄银瑞,吴小翠,安林,谭海曙,黄燕平,蓝公仆,陈国杰. 一种测量人眼小梁网脉动运动的方法和装置. 中国,发明专利,专利号:201811646089.3. (已受理) [7] 吴小翠,蓝公仆,秦嘉,安林,许景江,黄银瑞. 一种超宽范围的皮肤成像设备与方法. 中国,发明专利,专利号:201910696260.X (已受理) [8] 秦嘉,吴小翠,安林,谭海曙,陈国杰,蓝公仆,黄燕平,黄银瑞. 基于眼底脉动信号评估RNFL完整度的方法及检测装置. 中国,发明专利,专利号:201811653984.8 (已受理) [9] 许景江,別佳奇,蓝公仆,安林,秦嘉,黄燕平,阳娅,谭海曙. 一种光学相干层析扫描装置. 中国,发明专利,专利号:201911372710.6(已受理) |
||||||||||||||
|
|||||||||||||||
期刊评审 |
Science China Life Sciences Acta Biomaterialia Optics Express Biomedical Optics Express Frontiers in Physics(期刊编委、客座主编) Frontiers in Medicine IEEE Journal of Selected Topics in Quantum Electronics IEEE Photonics Journal IEEE Access Scientific Reports Physics in Medicine and Biology Frontiers in Bioscience-Landmark Photonics 光学学报 激光与光电子学进展 Applied Optics OSA Continuum Journal of Innovative Optical Health Sciences Journal of Ophthalmic Science |